
Page 1 of 19

Colony II

SpiderCast: Distributed Membership and Messaging for

HPC Platforms

Publish-Subscribe and DHT Services High Level Design

IBM Haifa Research Lab

Authors: Yoav Tock, Benjamin Mandler, Gennady Laventman

05/May//2010

IBM Research

 2

TABLE OF CONTENTS

1 INTRODUCTION .. 3

1.1 SPIDERCAST TOPOLOGY RECAP .. 3

2 DHT – DISTRIBUTED HASH TABLE ... 5

2.1 DHT IN A SINGLE ZONE .. 6
2.2 MULTI-ZONE DHT .. 7
2.3 CLIENT API ... 9

3 PUBLISH SUBSCRIBE... 11

3.1 PUB / SUB OPERATION WITHIN A ZONE ... 12
3.2 PUB / SUB OPERATION ACROSS ZONES.. 14
3.3 API.. 17

REFERENCES ... 19

IBM Research

 3

� �������	�
���

This document presents the design of the DHT and Publish-Subscribe components of

SpiderCast. This document is based on a document titled “An Architectural Overview and High

Level Design”, dated January 2010 [TR1]. For completeness and ease of reading we bring a

summary of the SpiderCast topology.

��� �
�������������������	���

The SpiderCast overlay is organized in a two tier hierarchical structure, comprised of “zones”,

which are federated with a management layer (see Figure 1).

Figure 1 – Base zones federated by a management layer.

At the lower level of the hierarchy are base-zones. Base-zones are federated by a management

layer, which forms a zone as well. The nodes which form the management layer can be either

from within each base-zone (“delegates”), or nodes which are not part of a base-zone

(“supervisors”). These two types of zones are called “delegated” or “supervised” zones,

respectively. Each zone runs a distributed gossip-based membership algorithm. The nodes in

Zone A Zone B

Management layer (management zone)

Base

zones

Zone Y

Delegated zones

Supervised zones

Zone Z

Delegate

Supervisor

Representative

IBM Research

 4

each zone have a full membership view of their zone members. A node can only be a member of

at most a single base-zone. Nodes in the management-zone have full view of the management

zone, and the full view of the base zone(s) they are responsible for. Thus a delegate in the

management zone knows about all the nodes from the base-zone it belongs to and all the nodes

from the management zone. A supervisor node has the membership of the management zone

and the membership of the base zones it supervises by means of a protocol between the different

entities. The protocol for connecting a base-zone with the management-zone can also tolerate

the failure of supervisors, representatives and delegates. The topology of each zone contains a

ring based on Virtual IDs (VIDs) which are derived from node names. In a sense, each base zone

implements a structured overlay (see Figure 2 below, [TR1]).

Figure 2 – Components of zone topology.

Random links Ring (by virtual ID) Finger table (by virtual ID)

Three different topics

“Interest aware” links Small world on Torus

IBM Research

 5

� �������
���
�����������������
One of the features of our Spidercast design is the inclusion of a structured overlay per zone (an

example of which is Chord [Stoica01]). A structured overlay naturally supports key based routing,

which is instrumental in our pub/sub design. However, structured overlays were primarily

conceived in the context of a distributed hash table (DHT). A DHT is a distributed structure that

supports the storage and look-up of key-value pairs. The basic interface consists of [Dabek03]:

DHT.put(key, value)

value = DHT.get(key)

DHT.remove(key)

Every key-value pair is stored on some overlay node, according to the specific implementation of

the DHT. Good implementations support efficient and scalable (O(Log(N))) insertion and look-up

of key-value pairs. The DHT is a very useful distributed storage abstraction, and can be used, for

example, to dedicate a chuck of a supercomputer compute nodes for an associative in memory

storage (e.g. Amazon’s Dynamo [DeCandia07]).

The well known implementations of DHTs operate in the following manner:

1) A node’s virtual ID (VID) is a secure hash (e.g. SHA1) of its unique ID (say IP:port).

2) Nodes are organized in a ring according to their VIDs.

3) When a node wants to save a key-value pair the same hash function (e.g. SHA1) is

invoked on the key, producing K-VID.

4) The storage node for the key is the node N who’s virtual ID N-VID is smallest out of all

participating nodes, but still holds N-VID >= K-VID. All ordering and relational operators

are interpreted cyclically on the VID space.

Inserting and getting a key-value follow the same rule.

IBM Research

 6

Figure 3 - DHT example on a 10 bit VID space: the storage node of key with VID=200 is

node with VID=250

A DHT server is a node that participates in the distributed storage scheme. A DHT client binds to

an arbitrary DHT server and accesses the distributed storage.

��� ����
����
����������

DHT implementation in a single zone follows the design of well established systems. Every

SpiderCast zone has full membership and implements a ring topology according to the node’s

VID (VID is computed from the node name, which is unique). As a result, a one-hop DHT can be

implemented, meaning that the target storage node of every key-value pair is known to the

source node. This type of DHT opens a direct connection to target node and performs the

requested operation directly (e.g. Cassandra [Cass09]). Having full membership also eases the

task of constructing a Chord-like finger table, which allows key based routing requests.

Insert key-value:

K-VID = 200

N-VID = 250

N-VID = 11

VID = 0 VID = 1023

N-VID = 180

DHT server

DHT client

IBM Research

 7

��� ����
 ���������

The DHT service basically provides associative storage to the nodes that belong to the overlay.

We differentiate between a DHT server and a DHT client. A server is a node that may actually

store key-value pairs, and a client is a node that simply uses the DHT service. When a client is

created a connection is formed to one or more servers that form an entry point to the DHT

service, for that particular client.

We envision a system in which the number of DHT servers can be changed dynamically,

according to the storage needs of the client nodes. The unit of allocation is a zone. A zone can be

configured to provide DHT services, in which case all the nodes in the zone become servers. The

DHT then grows and shrinks by adding and removing zones to the DHT. The DHT in each base-

zone is called “base-zone-DHT”.

When a DHT-client is created it requests its delegate in the management-zone to provide it with

an access point to the DHT, in the form of the ID of a DHT-server. That DHT-server then acts as

a proxy for the client in all DHT requests.

���������������	�
��

The delegate node (or nodes) of a base-zone-DHT in the management-zone mark themselves

(using an attribute) as representing a DHT zone.

Each base-zone name is associated with a VID (secure-hash of the name). The delegates that

represent DHT zones maintain a local data-structure of a ring from all the base-zone-DHTs,

based on their zone-VIDs. Let us call this data-structure the upper-tier-ring (UTR). Building the

UTR is a local operation because management nodes have full membership of the management-

zone. Each entry in the UTR contains the name of the zone, and the IDs of the respective

delegates.

The delegate of a base-zone-DHT propagates to its own base-zone the VID of the predecessor

base-zone-DHT, as found in the UTR.

�����

Lookup of the target storage node ID that is responsible for a certain key works as follows.

1. A DHT-server which belongs to a base-zone is provided with a key.

2. The DHT-server calculates the key-VID (secure hash of the key value).

3. The DHT-server determines if the key-VID is served by the local zone. A key-VID is

served by the local zone if: local-zone-VID >= key-VID > predecessor-zone-VID

4. If the key is served by the local zone, a normal DHT lookup is done (either one-hop or

multi-hop, as in Cassandra and Chord, resp.).

5. If the key is served by a foreign zone

IBM Research

 8

a. Send a request to the delegate to lookup the target-zone in the UTR, using the

key-VID. Lookup in the UTR follows the same rules as lookup in a one-hop DHT.

b. The delegate (or the originator) then sends a request to the delegate of the

target-zone, to lookup the target-node within the target-zone.

The server that originated the lookup may cache the key-VID, target-zone, and target-node triplet.

This may speed future lookups of the same key. The caches are invalidated by delegates when

they are notified of membership changes.

	��������
�

The data stored in a node may be replicated to guard against failures.

The data is first replicated to a predefined number of successors on the base-zone-DHT. This

provides protection against failures of individual nodes. This scheme would be enough if node

failures were independent. However, the block architecture of Blue Gene results in correlated

failures. For example, a single faulty node may mean the node card (containing 32 nodes) may

need to be shut down for repair. An entire zone may go offline because of a failed router, and so

on. To combat this scenario we provide lateral replication – a node replicates its data to another

node in the successor-zone according to the UTR. The target-node in the successor-zone that is

the replica is the one that will take care of the origin-node VID, if it were a key inserted into its

own base-zone-DHT.

��������
���
���
��
�������

The scheme described above assigns the same number of keys to each zone, irrespective of its

size. This works well in equal sized base-zones, but creates load imbalance if the zones have

different sizes.

We therefore define the notion of a zone-slice. A global configuration parameter, slice-size,

defines the number of nodes that compose a zone-slice (say 32 nodes). Each base-zone is

virtually represented in the UTR by K=ceil(base-zone-size / slice-size) virtual nodes, by creating

from the zone name K virtual zone names, using a suffix k=[1-K] . Note that the size of each zone

is known to all nodes in the management zone, so again this is a local operation.

Thus, a zone “A” with 64 nodes is represented by two virtual slices named “A:1” and “A:2”;

whereas a zone B with 1024 nodes is represented by 32 virtual slices “B:1” – “B:32”.

The lookup process described above works unchanged except that the UTR is now composed of

slices, rather than zones. The target-zone lookup returns the zone that the target slice represents.

This provides the appropriate weighing of zones and balances the key distribution.

IBM Research

 9

Lateral replication works by returning (instead of the successor zone-slice) the first successor

zone-slice that does not belong to the same base-zone as the source node.

��! ��
����"#��

The DHT is a distributed hash table implementation. It allows the client to insert key value pairs

into the table, and look-up these pairs using the key. A DHT client is created from the Spidercast

instance:

DHTClient Spidercast.createDHTClient (

 DHTClientConfig,

 DHTClientEventListener)

The client represents an access point to the table. The basic API has the following methods

[Dabek03]:

Insert or replace a key-value pair:

Boolean DHTClient.put(Key, Value)

Insert or replace a key-value pair, and retrieve the old value:

Value DHTClient.putAndRetrieve(Key, Value)

Get a value using the key:

Value DHTClient.get(Key)

Find if a key exists:

Boolean DHTClient.containsKey(Key)

Remove a key-value pair:

Boolean DHTClient.remove(Key)

A more advanced API allows write operations which are conditional on the value being written.

This allows atomic read-modify-write operations on the map entries without the use of distributed

locking.

Insert a key-value pair, if absent:

Boolean DHTClient.putIfAbsent(Key, Value)

Replace a key-value pair, only if it exists:

Value DHTClient.replace(Key, Value)

Replace a key’s value with a new value only if the current value in the table equals the old

value:

IBM Research

 10

Boolean DHTClient.replace(Key key, Value old, Value new)

Remove a key-value pair, only if the key is currently mapped to the given value:

Boolean DHTClient.remove(Key, Value)

Note that a client cannot do operations that result in an access to the entire table, such as getting

all the keys, all the values, getting the accurate size of the table, searching for a specific value,

deleting the entire map, etc.

IBM Research

 11

! #���
������	�
���
Publish/subscribe (pub/sub) is a popular paradigm for supporting many-to-many communication

in a distributed system (e.g. [Chockler01, Felber03]). Users interested in messages published on

certain topics issue subscribe requests specifying their topics of interest. The pub/sub

infrastructure then guarantees to distribute each newly published message to all the users that

have expressed interest in the topic in question.

Many popular pub/sub solutions use either a centralized or a fully meshed underlying

communication topology. Both approaches clearly do not scale in the case of a massively parallel

computer. SpiderCast intends to build a decentralized infrastructure in which the processes are

dynamically organized into an application level overlay network. The overlay created by

SpiderCast is then used to route topic-specific events to all the processes interested in that topic.

SpiderCast’s publish / subscribe capability refers to the topic-based flavor, in which the match

between the publishers and the subscribers is established via their respective declaration of a

particular topic name to be used. Conceptually, it is a broker-less fully decentralized design based

on an Interest-Aware Membership service within and across zones. This paradigm is especially

suited for distributed applications or systems that rely on short-lived usually large pieces of

information distribution as a core element. Such a distributed system can be logically arranged

into sub-groups via their subscription pattern to this service and enable an application group level

multicast in which information is exchanged in an asynchronous fashion, and reaches only parties

that have indicated a specific interest in such data. This paradigm is often associated with the

Observer design pattern.

Since its inception the Publish / Subscribe model has been used in a plethora of different kinds of

systems. The thin line connecting the different kind of uses lies with the asynchronous

communication nature connecting different cooperating yet independent entities in a distributed

environment.

An example use case is that of data dissemination. This use case is characterized by mostly

having a single publisher pumping data into the system with potentially many subscribers

interested in receiving the posted information. Generic data distribution, for replication, sharing, or

other purposes, can be considered to belong to this family as well. For example, one component

may publish the results of a computation which is needed as input for other components tasks.

Parts of a work flow system may be built using this method. Such a scheme may be used as well

to run cache coherency protocols, in which either invalidations or replacement updated data is

communicated using the publish – subscribe mechanism.

IBM Research

 12

!�� #���$����%�����
���&
��
���������

Within a zone the pub / sub service takes advantages of a couple of existing SpiderCast

capabilities, namely full membership knowledge and the interest-aware membership service,

which is a part of the general attribute service. Whenever a process subscribes to a topic, that

information will be placed in its own attributes, and thus will be propagated to all other processes.

Eventually all processes will know the identity of all the processes that have subscribed to all the

topics. Gossip is used to track process membership, process attributes, and topic group

membership. Topic group membership means tracking which processes are subscribed to every

topic. Indirectly this service takes advantage of the routing capability which knows how to send a

message from each member to each other member within a zone, using the structured topology.

In order to optimize pub/sub routing, interest-aware links may be added. Those links are added

according to the subscription patterns of the processes, in an attempt to improve the connectivity

of a topic sub-graph [Chockler07]. Finally, an end-to-end reliability layer will be employed in order

to ensure the delivery of all pub / sub messages to all receivers in the correct order. This layer is

needed to support reliability over potentially multi-hop messages.

Topic objects are created via a call to a SpiderCast factory method. This factory method receives

as input parameters a topic name and a configuration object. Topic name may be a general

string, or a multicast group address like string (will be determined at a later stage). This method

will generate a 128 bit Topic ID (TID), which will be used internally by subsequent SpiderCast

operations. The transformation to a TID may be performed by a dedicated directory service,

which may be distributed on each node or at a central location, or may simply be created by a

local utility using a secure, collision-free, hash function. It is feasible for this information to be

distributed across nodes in a management layer DHT, which in turn may serve as lookup service,

both from topic name to its corresponding hash and vice versa.

Once a Topic object was created, both topic publishers and subscribers can be created.. As

noted above, the attribute service will carry topic subscribers’ information. Thus, there will be an

attribute , named _interest for example, which will carry for each process the list of TIDs to which

this process has subscribed. Routing within a zone may be optimized based on the amount of

processes subscribed to a topic, as well as the distribution of these processes. For a topic with a

small audience data may be sent in a point-to-point manner using either multi-hop routing over

the overlay links, or by opening direct links from the publisher to the subscribers. For a topic with

a large audience, broadcast may be employed [El-Ansary03]. Broadcast can be propagated over

the overlay links efficiently and processes which are not interested in a specific piece of

information may simply ignore it. An additional optimization may be put in place by which during

the broadcast process complete sub-trees are pruned if it is identified that no process in that sub-

tree is interested in the specific topic.

IBM Research

 13

!���� ���
��
�
���������

There are several reliability modes possible for pub / sub messages:

� Unreliable-Unordered - Best effort delivery. Messages are delivered to the application

upon arrival, with no effort to order incoming messages or to reclaim lost messages, or to

eliminate duplicate messages.

� Unreliable-Ordered – Messages will be delivered to the application in order and without

duplicates, however messages may get lost.

� Ack-Based - Reliable ordered delivery based on explicit acknowledgements. Messages

will be delivered to the application in order and without duplicates. The receiver will try to

recover missing message by sending retransmission requests. The transmitter adjusts its

history buffer based on information received from all receivers. Thus, the publisher needs

to be aware of all receivers.

� Nack-Based - Reliable ordered delivery based on negative acknowledgements only.

Messages will be delivered to the application in order and without duplicates. The receiver

will try to recover missing message by sending retransmission requests. The transmitter

adjusts its history buffer based on its history size. The transmitter does not expect to

receive acks from the receivers; moreover, the transmitter does not need to be aware of

the identity of the receivers. Thus, the transmission rate is determined by the transmitter,

and slow receivers may fall behind and lose messages.

There is a transport protocol in place between the publishers and the subscribers, based on the

reliability mode desired. In the following sub-sections we’ll provide as an example some more

details on a possible ack-based implementation. It will be determined in the future which mode(s)

we will support.

!���� ���
	�#���
�����

The topic publisher determines the reliability mode from the configuration object. Upon the

creation of a topic publisher, the new publisher instance obtains the current subscription list of the

topic in question from the interest-aware membership service. The publisher initiates a

handshake protocol with every subscriber in its list. Every subscriber that hasn’t responded to the

handshake after a predetermined amount of time is marked as failed, and an attempt is made to

make the subscriber aware of this failure. Each publisher keeps track of the state of its relation

with every subscriber (discovered, operational, …) as well as a message history buffer, from

which it can re-transmit messages that haven’t reached their destination. This buffer is trimmed

once in a while based on the last message received by all subscribers.

Outgoing messages are numbered, and information regarding the oldest and newest messages

available from the publisher is sent via periodic heartbeat messages to all subscribers. These

IBM Research

 14

heartbeat messages may be piggybacked over data messages if transmitted during a certain

time period.

In an ACK-based configuration, subscribers send an ACK to the publisher every configurable

amount of time or amount of messages received. The ACK message will contain the last

continuous message received as well as indication of missing messages. In response the

publisher can trim its history buffer based on the collective response from all receivers and can

re-transmit missing messages. When no ACK is received from a subscriber within a timeout

period, that subscriber is marked as failed, and an attempt is made to make the subscriber aware

of this failure.

When a publisher is terminated by the enclosing application it notifies all its subscribers of the

upcoming termination. From that moment on, no additional messages can be sent via this

publisher but it may remain alive for a while longer in order to service any incoming

retransmission requests.

!���! ���
	����	�
����

When a subscriber is created by the application it will be inserted into the interest-aware

membership and the attribute service will propagate this information to all processes in the zone.

Each publisher upon receiving an indication pointing to a new subscriber will initiate a handshake

process with that subscriber.

Upon receiving a handshake the subscriber sends an appropriate response, namely whether it

wants to accept or reject that publisher. While accepting the connection, the subscriber will notify

the application that a new publisher has been detected, and will create the data structures it

needs in order to pass messages up to the application in the correct order as well as maintain all

the information it needs in order to send periodic ACK messages to the publishers.

Upon receiving a data message it will be placed in internal buffers and if the ordering

requirements have been fulfilled it will be delivered to the application.

When the time comes, the subscriber will send an ACK message to each publisher.

When the subscriber is closed by the application, the internal interest will be updated accordingly

and propagated by the attribute service. The subscriber will let all the publishers know that it has

been closed.

!�� #���$����%�����
���"	�����������

Publish / Subscribe should support different entities spanning multiple zones. A Multi-zone pub /

sub service poses several challenges due to the potential scale of the overall system, and the

IBM Research

 15

need to support different kinds of usage patterns, which not always coincide with the underlying

zones distribution.

The main challenges in this respect are group membership and message routing, which come to

solve both main questions: first, how does a publisher knows which processes are interested in a

piece of information, and second, how does a publisher makes the information available to the

interested parties. Group membership, including the interest-aware component, refers to tracking

which processes are interested in every given topic. Within a zone full membership knowledge is

maintained, thus every process is exposed to the interests of al other members in the zone. This

mechanism is clearly not scalable, and thus a different solution needs to be devised for multi-

zone scenarios. In the same manner, efficient routing from every source to every target is well

supported within a zone, due to the full membership view, but a different mechanism needs to be

put in place to support multi-zone traffic.

1) Group Membership:

Group membership means tracking which processes are interested in every given topic. Within

zones that is achieved by the gossip mechanism. Every process in a zone knows about the

interest of every other process. At the management layer the information is more coarse-grain,

and is organized differently.

1) One possibility is for a supervisor/delegate to present the interest that is the union of the

interests in its zone. Let us call that the “zone-interest”. The representative then

propagates the zone-interest using gossip to every other member of the management

zone, just like in any other base zone. The advantage of this scheme is its simplicity. The

disadvantage is that every process in the management zone is exposed to the full list of

topics, which can be very large.

2) In another option every topic is assigned a “home” process in the management layer,

using consistent hashing. That (home) process tracks which of the zones is “interested”

in that topic. Assuming that the total number of topics in the system may be very large,

but that every process is interested in a small subset of those, this scheme ensures that

no single process is ever exposed to the list of all topics in the system.

2) Messages Routing:

Routing will take place over the overlay links. Within each zone routing can be achieved by using

the structured-overlay topology combined with known techniques for pub/sub (e.g. Scribe,

[Castro02]). Routing between zones can be achieved in several manners:

1) Using the management layer for actually routing messages. The management layer has

the complete inter-zone subscription information and thus, the representative of a

publisher in the management zone can grab the data to be transmitted, pass it over to all

IBM Research

 16

representatives of zones which are subscribed to the topic in question, and have these

representatives in turn propagate the information within their respective zones.

2) Using the management layer as route “trackers” that respond to “route queries” and

provide a route for messages between zones.

3) A preferred combination of several of the options mentioned above in which every topic is

assigned a “home process” in the management layer, which keeps track of the zones

interested in the topic, as well as a “home process” within each interested zone. The

management home process for a topic keeps track of the per-zone home processes, and

makes this information available in return to all zone home processes. Thus, a DHT is

used at the management layer in order to determine the node which is responsible to

keep track of a given topic. Whenever the first process within a zone declares its interest

in a specific topic, by creating the respective topic subscriber or publisher, that

information will flow to the zone representative in the management layer. Using a per

zone distribution scheme, the representative will designate a specific process as the

zone’s topic gateway. From that moment on, the chosen process is in charge of

propagating out all publications from within the zone, as well as distributing within the

zone all publications originating in other zones.

The zone representative will update the topic’s home node in the management layer as to

the zone’s interest as well as the zone’s home process for that topic. In turn it will extract

the current information held by the home process, and thus will hold the identities of all

other zone home processes for that topic.

The zone home process is responsible for dissemination to all other zone home

processes every piece of information that was published for this topic, as well as

disseminating within its zone every piece of information for this topic which was published

in other zones. In this scheme all the zone home processes will build a group (zone) of

their own, whose membership will be derived from the topic’s management home

process. This scheme should achieve scalable and efficient topic interest group

membership as well as information routing throughout the entire system. Within this

newly formed group efficient dissemination trees can be built and maintained. Thus,

publications should reach every interested zone with low latency, and the distribution

within the zone will be made efficient as well due to the full membership knowledge.

Both kinds of home processes will be determined in a manner by which it’s trivial to

locate its replacement in case of a process failure (should simply be the following process

on the ring), and the information may be replicated accordingly.

IBM Research

 17

!�! "#��

The SpiderCast factory instance is used to create topics:

Topic SpidercastFactory.createTopic(

 TopicName,

 TopicConfig)

The TopicName is an identification of the topic in question. This is the property that needs to be

agreed upon between publishers and subscribers. TopicConfig is a map-like configuration

object, which encapsulates all the Topic parameters.

The SpiderCast instance is used to create subscribers and publishers:

TopicPublisher Spidercast.createTopicPublisher(

 TopicPublisherConfig,

 TopicPublisherEventListener,

 Topic)

The TopicPublisherConfig is a map-like configuration object, which encapsulates all the

TopicPublisher parameters. The TopicPublisherEventListener object provides

a callback for the delivery of life-cycle events that pertain to the specific topic publisher. The

Topic object identifies the abstract channel used. The main usage of the topic publisher is to

submit messages to the topic:

TopicPublisher.submitMessage(Message)

A subscriber is created in a similar fashion:

TopicSubscriber Spidercast.createTopicSubscriber(

 TopicSubscriberConfig,

 TopicSubscriberEventListener,

 MessageListener,

 Topic)

The configuration object, event listener, and topic carry the same meaning as in the publisher.

The additional parameter MessageListener provides a callback method by which incoming

messages are delivered to the application:

 MessageListener.onMessage(Message)

Additional methods on the TopicPublisher and TopicSubscriber are:

IBM Research

 18

� close()

� isOpen()

� getTopicName()

IBM Research

 19

��'����	���

[TR1] Yoav Tock, Benjamin Mandler, “SpiderCast: Distributed Membership and Messaging for HPC Platforms: An
Architectural Overview and High Level Design”. Colony-II technical report, January 2010.

[Dabek03] Frank Dabek, Ben Zhao, Peter Druschel, John Kubiatowicz, Ion Stoica, “Towards a Common API for
Structured Peer-to-Peer Overlays”. IPTPS 2003.

[Decandia07] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman, A. Pilchin, S. Sivasubramanian,
P. Vosshall, and W. Vogels, "Dynamo: amazon's highly available key-value store," in SOSP '07: Proceedings of
twenty-first ACM SIGOPS symposium on Operating systems principles, vol. 41, no. 6. New York, NY, USA:
ACM, 2007, pp. 205-220.

 [Stoica01] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and H. Balakrishnan, "Chord: A scalable peer-to-peer lookup
service for internet applications," SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 149-160, October
2001.

[Cass09] Avinash Lakshman, Prashant Malik. “Cassandra - A Decentralized Structured Storage System”. LADIS 2009.

[Chockler01] G. Chockler, I. Keidar, and R. Vitenberg, "Group communication specifications: a comprehensive study," ACM
Computing Surveys, vol. 33, no. 4, pp. 427-469, 2001.

[Felber03] P. Th, P. A. Felber, R. Guerraoui, and A. M. Kermarrec, "The many faces of publish/subscribe," ACM Comput.
Surv., vol. 35, no. 2, pp. 114-131, June 2003.

 [Chockler07] G. Chockler, R. Melamed, Y. Tock, and R. Vitenberg, "SpiderCast: a scalable interest-aware overlay for topic-
based pub/sub communication," in DEBS '07: Proceedings of the 2007 inaugural international conference on
Distributed event-based systems. New York, NY, USA: ACM, 2007, pp. 14-25.

[Castro02] M. Castro, P. Druschel, A. M. Kermarrec, and A. I. T. Rowstron, "Scribe: a large-scale and decentralized
application-level multicast infrastructure," Selected Areas in Communications, IEEE Journal on, vol. 20, no. 8,
pp. 1489-1499, 2002.

[El-Ansary03] Sameh El-Ansary, Luc Onana Alima, Per Brand and Seif Haridi, Efficient Broadcast in Structured P2P
Networks, The 2nd International Workshop On Peer-To-Peer Systems (IPTPS'03), (Berkeley, CA, USA),
February 2003

